Abstract

We have developed a simple digital speckle pattern interferometry (DSPI) and shearography setup to measure the displacement and the corresponding strains of small complex bony structures. We choose both optical techniques because we want to obtain very small deformations (± 20 μm) of small objects (± 1cm). Furthermore full field and in situ measurements are preferred. We first use a Michelson DSPI arrangement with phase shifting. In this way we can obtain the out-of-plane displacements precisely. Second, shearography is introduced to measure the derivative of the out-ofplane displacement. In this way some intrinsic disadvantages of DSPI can be overcome. We have developed these setups to measure the out-of-plane deformations of (small) bird beaks when realistic external forces are applied. In this way, we have a full field validation measurement to which we can compare the outcome of realistic finite element models. The aim is to determine whether the shape, and not only the size, of the bird beaks are optimized to deal with the biting forces that a species encounters. This quantitative analysis will help biologists to investigate if beak morphology is adapted to feeding habits. Applying the method to the famous evolution model of the Darwin's finches will provide scientific proof of functional evolution. In this paper we will present both the DSPI and shearography setup, a comparison of the performance of both techniques on a simple deflection of a cantilever beam and the first results obtained on loaded bird beaks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.