Abstract

This paper reviews the properties and phases of fullerenes and their derivatives and compounds under high pressures. For obvious reasons most of the paper deals with C60 but the materials reviewed also include C70, simple derivatives of C60, carbon nanotubes, and intercalation compounds of C60 with both acceptors and donors, mainly alkali metals. After a brief overview of high-pressure techniques and the structures and properties of C60 at atmospheric pressure, the structural phase diagram of C60 from atmospheric pressure to above 40GPa (400kbar) is reviewed. The evolution with pressure of the orientational and translational structure of 'normal' molecular C60 in the range up to 1-5GPa (depending on temperature) is discussed in some detail, as is the appearance of a large number of polymeric phases at higher pressures and temperatures, some of them known to have extreme mechanical properties. At very high static (or shock) pressures or temperatures, C60 transforms into ordered or disordered forms of diamond or graphite. The phase diagram is reasonably well investigated up to near 10GPa, but at higher pressures there are still large gaps in our knowledge. Available experimental data for the physical properties of both monomeric and polymeric C60 under high pressures are reviewed as far as possible. The compression behaviour of C60 has been well investigated and is discussed in detail because of its basic importance, but optical, electrical and lattice properties have also been studied for several of the many structural phases of C60. Whenever possible, experimental data are compared with the results of theoretical calculations. The phase diagram and properties of C70 are much less known because of the larger complexity caused by the anisotropy of the molecule, and very little is known about most compounds of C60. However, noble-gas intercalation in C60 has been reasonably well investigated. Finally, the high-pressure properties of superconducting alkali-metalintercalated C60 are briefly reviewed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.