Abstract

The two main electrode techniques for fullerenes production; the direct arc technique and the resistive heating of graphite rod were employed in this work. One of the electrodes was resistively heated to high temperature and subjected to arc discharge along its length by the second graphite rod. Fullerenes solid were extracted from carbon soot samples collected from an installed arc discharge system using the solvent extraction method. The fullerenes solid obtained from carbon soot collected for 2 min of arc discharge run when one of the electrodes was resistively heated at different voltages all gave higher yields (maximum of 67 % higher, at 150 A arc current and 200 Torr chamber pressure) compared to when no resistive heating was carried out. Scanning electron microscopy and ultraviolet visible spectroscopy analysis carried out on all fullerenes solid indicated the presence of fullerenes. The enhancement of fullerenes production by combined resistive and direct arc techniques shows prospect for possible use at industrial level for large scale production.

Highlights

  • Macroscopic quantities of fullerenes were first produced using the arc discharge method by Kratschmer, Huffman, and coworkers in 1990 (Charlse and Chia-Chun 1994)

  • Carbon soot collected for 2 minutes of arc discharge / in tens of mg

  • Where one of the electrodes was resistively heated at 4.5, 7.5 and 11 V, best fullerenes yield of 4 % was extracted from carbon soot collected when one of the electrodes was resistively heated at 11 V

Read more

Summary

Introduction

Macroscopic quantities of fullerenes were first produced using the arc discharge method by Kratschmer, Huffman, and coworkers in 1990 (Charlse and Chia-Chun 1994). They first of all carried out resistive heating of graphite rods in helium environment to produce carbon soot containing fullerenes in macroscopic mass before further modifying the technique into an arc-based carbon vaporization process to produce gram quantities of fullerenes (Nirupam et al 2015). Fullerenes have found cutting-edge applications in technology such as the solar cells technology and molecular electronics among many other areas (Yuming and Guang 2014). They are currently one of the most attractive nanomaterials from applications perspective (Krolow et al 2013).

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call