Abstract

Solution processed polymer/fullerene blend films are receiving extensive attention as the photoactive layer of organic solar cells. In this paper we report a range of photophysical, electrochemical, physicochemical and structural data which provide evidence that formation of a relatively pure, molecularly ordered phase of the fullerene component, phenyl-C61-butyric acid methyl ester (PCBM), may be the key factor driving the spatial separation of photogenerated electrons and holes in many of these devices. PCBM crystallisation is shown to result in an increase in its electron affinity, providing an energetic driving force for spatial separation of electrons and holes. Based upon our observations, we propose a functional model applicable to many organic bulk heterojunction devices based upon charge generation in a finely intermixed polymer/fullerene phase followed by spatial separation of electrons and holes at the interface of this mixed phase with crystalline PCBM domains. This model has significant implications for the design of alternative acceptor materials to PCBM for organic solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.