Abstract

Fullerene derivative C60TT, which is substituted with the low-molecular-weight organogelator tris(dodecyloxy)benzamide, formed nanowire structures on application of the Langmuir-Blodgett (LB) method. The surface morphology of the C60TT LB film was dependent on the holding time before deposition at a surface pressure of 5 mN m(-1); it changed from a homogeneous monolayer to a bilayer fibrous structure via a fibrous monolayer structure, which was estimated to have dimensions of 1.2 nm in height, 8 nm in width, and 5-10 microm in length. From the structural and spectroscopic data, it is inferred that close packing of the fullerene moiety occurs along with intermolecular hydrogen bonding within the monolayer fibrous structure. The morphological changes in the LB film are explained kinetically by the Avrami theory, based on the decrease in the surface area of the monolayer at the air/water interface. The growth of the quasi-one-dimensional fibrous monolayer structures at holding times from 0 to 0.2 h is considered to be an interface-controlled process, whereas the growth of the quasi-one-dimensional bilayer fibrous structures from 0.2 to 18 h is thought to be a diffusion-controlled process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.