Abstract

Fullerene transformation emerges as a powerful route to construct defect-rich carbon electrocatalysts, but the carbon bond breakage and reformation that determine the defect states remain poorly understood. Here, we explicitly reveal that the spatial proximity of disintegrated fullerene imposes a crucial impact on the bond reformation and electrocatalytic properties. A counterintuitive hard-template strategy is adopted to enable the space-tuned fullerene restructuring by calcining impregnated C60 not only before but also after the removal of rigid silica spheres (∼300 nm). When confined in the SiO2 nanovoids, the adjacent C60 fragments form sp3 bonding with adverse electron transfer and active site exposure. In contrast, the unrestricted fragments without SiO2 confinement reconnect at the edges to form sp2-hybridized nanosheets while retaining high-density intrinsic defects. The optimized catalyst exhibits robust alkaline oxygen reduction performance with a half-wave potential of 0.82 V via the 4e- pathway. Copper poisoning affirms the intrinsic defects as the authentic active sites. Density functional theory calculations further substantiate that pentagons in the basal plane lead to localized structural distortion and thus exhibit significantly reduced energy barriers for the first O2 dissociation step. Such space-regulated fullerene restructuring is also verified by heating C60 crystals confined in gallium liquid and a quartz tube.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.