Abstract

A series of shape-persistent star-shaped oligo(phenylene vinylene) liquid crystals and derivatives with fullerene tethered through spacers of different lengths to one arm were successfully synthesized. Solution studies by NMR, UV/Vis and fluorescence spectroscopy revealed the preferential location of the C60 acceptor in the vicinity of the peripheral donor unit, which affects the quenching of the emission of the conjugated stilbenoid scaffold in the donor-acceptor dyad. The fluorescence was completely absent in the liquid crystal phase due to the extraordinary hierarchical self-assembly. In this family of mesogens, the intrinsic free space has to be filled either by an extremely tight packing of the stars or by the fullerenes as guests. The spacer lengths control the nanosegregation of the C60 units in the cavities of the stars in either independent triple helices or unprecedented 3D networks, in which fullerenes are positioned at the interface of neighboring columns. Eventually, the clearing temperature of such large complex donor-acceptor systems can be tuned by an entropy effect defined by the length of the spacer. The accessibility of the isotropic phase without decomposition is an important prerequisite for future alignment studies associated with potential material applications in organic electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.