Abstract

Organized composite molecular nanoassemblies of fullerene and poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV) prepared in acetonitrile/toluene mixed solvent absorb light over the entire spectrum of visible light. The highly colored composite clusters can be assembled as a three-dimensional array onto nanostructured SnO2 films by electrophoretic deposition approach. The composite cluster films exhibit an incident photon-to-photocurrent efficiency (IPCE) as high as 18%, which is significantly higher than that of a molecular assembly composed of 5,10,15,20-tetrakis(3,5-di-tert-butylphenyl)-21H,23H-porphyrin (H2P) and C60 prepared in the same manner (4%). The maximum IPCE value increases to 25% at an applied bias potential of 0.2 V vs saturated calomel reference electrode (SCE). The power conversion efficiency of a MEH-PPV and C60 assembly-modified electrode is determined to be 0.24%. The photocurrent generation properties observed with MEH-PPV and C60 clusters demonstrate the synergy of these systems towards yielding efficient photoinduced charge separation within these composite nanoclusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.