Abstract

Fullerenes with novel structures find numerous potential applications, particularly in the fields of biology and pharmaceutics. Among various fullerene derivatives, those exhibiting amphiphilic character and capable of self-assembly into vesicles are particularly interesting, being suitable for delayed drug release. Herein, we report the synthesis and self-assembly of biocompatible hollow nanovesicles with bilayer shells from amphiphilic functionalized fullerenes C60R5Cl (R=methyl ester of 4-aminobutyric/glutamic acid or phenylalanine). The thus prepared vesicles exhibit sizes of 80–135nm (depending on R) and can be used as delayed-release carriers of anti-cancer drugs such as 5-fluorouracil, cyclophosphamide, and cisplatin, with the time of 5-fluorouracil release from drug-containing vesicles exceeding that of non-encapsulated forms by a factor of three. We further reveal the effect of R on the loading amount and release rate/amount of vesicle-encapsulated drugs, demonstrating a potential pharmaceutical application of the prepared nanovesicles depending on the nature of R.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call