Abstract

This letter studies a wireless-powered amplify-and-forward relaying system, where an energy-constrained relay node assists the information transmission from the source to the destination using the energy harvested from the source. We propose a novel two-phase protocol for efficient energy transfer and information relaying, in which the relay operates in full-duplex mode with simultaneous energy harvesting and information transmission. Compared with the existing protocols, the proposed design possesses two main advantages: 1) it ensures uninterrupted information transmission since no time switching or power splitting is needed at the relay for energy harvesting; and 2) it enables the so-called self-energy recycling, i.e., part of the energy (loop energy) that is used for information transmission by the relay can be harvested and reused in addition to the dedicated energy sent by the source. Under the multiple-input single-output (MISO) channel setup, the optimal power allocation and beamforming design at the relay are derived. Numerical results show a significant throughput gain achieved by our proposed design over the existing time switching based relay protocol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.