Abstract

For full-waveform (FW) LiDAR signals, conventional echo decomposition methods use complicated filtering or de-noising algorithms for signal pre-processing. However, the speed and accuracy of these algorithms are limited. In this paper, we study a highly efficient and accurate decomposition method based on the FW dense connection network (FDCN) or FW deep residual network (FDRN). FDCN is a lightweight and efficient network for SNR higher than 24 dB, while FDRN is a deeper neural network with multiple residual blocks and works well for low SNR such as 12 dB. We compare FDCN and FDRN with other conventional methods. With FDCN and FDRN, the mean error for estimating an echo peak location is under 0.2 ns, while the amplitude error is under 5 mV when the dynamic range is 0∼100mV. Both errors are much lower than the values using conventional methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.