Abstract

Creating a mechanical earth model (MEM) during well planning, and real-time revision has proven to be extremely valuable to reach the total depth of well safely with least instability problems. One of the major components of MEM is determining horizontal stresses with reasonable accuracy. Leak-off and minifrac tests are commonly used for calibrating horizontal stresses. However, these tests are not performed in many oil and gas wellbores since the execution of such tests is expensive, time-consuming and may adversely impact the integrity of a wellbore.In this study, we presented a methodology to accurately estimate the magnitudes and directions of horizontal stresses without using any leak-off test data. In this methodology, full waveform acoustic data is acquired after drilling and utilized in order to calibrate maximum horizontal stress. The presented methodology was applied to develop an MEM in a wellbore with no leak-off test data. Processing of full waveform acoustic data resulted in three far-field shear moduli. Then based on the acoustoelastic effect, maximum horizontal stress was calibrated. Moreover, maximum horizontal stress direction was detected using this methodology through the whole wellbore path. The application of this methodology resulted in constraining the MEM and increasing the accuracy of the calculated horizontal stresses, accordingly a more reliable safe mud weight window was predicted. This demonstrates that the presented methodology is a reliable approach to analyze wellbore stability in the absence of leak-off test.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.