Abstract

Using the full wave approach, the single and double scattered electromagnetic fields from deterministic one-dimensional rough surfaces are computed. Full wave expressions for the single and double scattered far fields are given in terms of multidimensional integrals. These integrals are evaluated using the Cornell National Supercomputer IBM/3090. Applying the steepest descent approximation to the double scattered field expressions, the dimensions of the integrals are reduced from four to two in the case of one-dimensional rough surfaces. It is shown that double scatter in the backward direction is significant for near normal incidence when the rough surface is highly conducting and its mean square slope is very large. Even for one-dimensional rough surfaces, depolarization occurs when the reference plane of incidence is not parallel to the local planes of incidence and scatter. A geometrical optics approximation is used to interpret the results of the double scattered fields for normal incidence near backscatter. The physical interpretation of the results could shed light on the observed fluctuations in the enhanced backscatter phenomenon as the angle of incidence increases from near normal to grazing angles. The results show that double scatter strongly depends upon the mean square slope, the conductivity of the rough surface and the angle of incidence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.