Abstract

Advances in interconnect technologies, such as the increase of the number of metal layers and 3-D stacking technique, have paved the way for higher functionality and superior performance while reducing size, power, and cost in today's integrated circuit and package products. However, whether or not the package preserves signal integrity (SI) has become a crucial concern for system designers. In this study, a systematic full-wave numerical approach, based on a nonconformal finite-element domain decomposition method (DDM), is proposed for 3-D real-life circuit/package simulations. First, an automatic domain partitioning strategy is utilized to divide the entire model into a number of sub-domains. Each sub-domain is then meshed independently and an <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">h</i> -version of adaptive mesh refinement is employed. Next, a nonoverlapping DDM is adopted to efficiently solve the finite-element matrix equation. Afterwards, a model-order reduction technique is exploited to compute the multiport spectral responses. SI effects such as signal delay, coupling, and reflection are simulated on a product-level package benchmark. Finally, numerical results verify the analysis and demonstrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.