Abstract

AbstractWideband transitions are designed and analysed by using two different approaches of the finite‐difference time‐domain (FDTD) method, in combination with the theory of nonuniform transmission lines. These transitions consist of a ridged waveguide‐based taper between a shielded microstrip and a standard X‐band rectangular waveguide. In the first step, a full‐wave 2D‐FDTD scheme is used to calculate the dispersion characteristics, as well as the geometry dependence of the impedance in the double ridged waveguide. Once these design curves have been obtained, the stepped transmission line transformer theory is used to design the tapers. In a former step, the nonuniform 3D‐FDTD technique is applied, the transitions are simulated and the method is validated. © 2003 Wiley Periodicals, Inc. Microwave Opt Technol Lett 38: 317–320, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.11048

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.