Abstract

We present a rigorous forward model for phase imaging of a 3-D object illuminated by a cone-shaped x-ray beam. Our model is based on a full-wave approach valid under the first Rytov approximation, and thus can be used with large and thick objects, e.g., luggage and human patients. We unify light-matter interaction and free-space propagation into an integrated wave optics framework. Therefore, our model can accurately calculate x-ray phase images formed with sources of arbitrary shape, and it can be effectively incorporated into x-ray phase tomography as a forward model. Within the best of our knowledge, this is the first non-paraxial, full-wave model for X-ray phase imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.