Abstract

The bistatic scattering cross sections are derived for rough one-dimensional perfectly conducting surfaces using the full wave approach. The surfaces are characterized by four-dimensional Gaussian joint probability density functions for heights and slopes. Thus, correlations between the rough surface heights and slopes are accounted for in the analysis. Convergence of the formal series solution is considered. Self-shadowing effects are included. The full-wave solutions are compared with the small perturbation solutions, which are polarization dependent, and the specular point (physical optics) solutions, which are independent of polarization. Both the physical optics and the small perturbation solutions can be obtained from the full-wave solution.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call