Abstract

BackgroundTranscranial focused ultrasound (tcFUS) is an attractive noninvasive modality for neurosurgical interventions. The presence of the skull, however, compromises the efficiency of tcFUS therapy, as its heterogeneous nature and acoustic characteristics induce significant distortion of the acoustic energy deposition, focal shifts, and thermal gain decrease. Phased-array transducers allow for partial compensation of skull-induced aberrations by application of precalculated phase and amplitude corrections.MethodsAn integrated numerical framework allowing for 3D full-wave, nonlinear acoustic and thermal simulations has been developed and applied to tcFUS. Simulations were performed to investigate the impact of skull aberrations, the possibility of extending the treatment envelope, and adverse secondary effects. The simulated setup comprised an idealized model of the ExAblate Neuro and a detailed MR-based anatomical head model. Four different approaches were employed to calculate aberration corrections (analytical calculation of the aberration corrections disregarding tissue heterogeneities; a semi-analytical ray-tracing approach compensating for the presence of the skull; two simulation-based time-reversal approaches with and without pressure amplitude corrections which account for the entire anatomy). These impact of these approaches on the pressure and temperature distributions were evaluated for 22 brain-targetsResultsWhile (semi-)analytical approaches failed to induced high pressure or ablative temperatures in any but the targets in the close vicinity of the geometric focus, simulation-based approaches indicate the possibility of considerably extending the treatment envelope (including targets below the transducer level and locations several centimeters off the geometric focus), generation of sharper foci, and increased targeting accuracy. While the prediction of achievable aberration correction appears to be unaffected by the detailed bone-structure, proper consideration of inhomogeneity is required to predict the pressure distribution for given steering parametersConclusionsSimulation-based approaches to calculate aberration corrections may aid in the extension of the tcFUS treatment envelope as well as predict and avoid secondary effects (standing waves, skull heating). Due to their superior performance, simulationbased techniques may prove invaluable in the amelioration of skull-induced aberration effects in tcFUS therapy. The next steps are to investigate shear-wave-induced effects in order to reliably exclude secondary hot-spots, and to develop comprehensive uncertainty assessment and validation procedures.

Highlights

  • Transcranial focused ultrasound under magnetic resonance imaging guidance has attracted the interest of the scientific and clinical community in recent years as a noninvasive and promising treatment modality

  • Utilizing Simulation-based approaches to calculate aberration corrections for Transcranial focused ultrasound (tcFUS) therapies may aid in the extension of the tcFUS treatment envelope as well as predict and avoid possible secondary effectsof these procedures, e.g., standing waves and skull heating

  • DDue to their superior performance, simulation-based techniques may prove invaluable in the amelioration of the undesirable skull-induced aberration effects in tcFUS therapy

Read more

Summary

Introduction

Transcranial focused ultrasound (tcFUS) under magnetic resonance imaging guidance (tcMRgFUS) has attracted the interest of the scientific and clinical community in recent years as a noninvasive and promising treatment modality. The skull poses the largest barrier to the use of tcFUS; the combination of its complex heterogeneous nature and its significantly different acoustic properties compared to the soft tissue, i.e., twice the speed of sound and density and at least an order of magnitude higher absorption [24], can cause several undesirable effects. These include distortion of the acoustic energy deposition, shifting of the focus, and a significant decrease of the treatment’s focal gain, i.e., the ratio between the energy deposition at the focus and the energy deposition on the scalp and skull bone [25, 26]. Simulations were performed to investigate the impact of skull aberrations, compare different aberration correction approaches to achieve refocusing, investigate the possibility of extending the tcFUS treatment envelope, and explore acoustic and thermal secondary effects of the treatment

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.