Abstract
It is difficult to obtain the accurate high-lying vibrational energies for most of the diatomic electronic states on modern experiments or theoretical computations based on quantum mechanics. Based on the new analytical formula for dissociation energy and algebraic method (AM) generated by Sun et al., the second order perturbation theory are used to study the full vibritional energies{E AM υ } and dissociation energies of the Li 2 -3 3 Σ + g ,Li 2 -1 3 Δ g ,Li 2 -2 3 Π g ,Na 2 -B 1 Π u and K 2 -4 1 Σ + g electronic states. The obtained results not only agree well with the experimental data for the low-lying vibrational energies, but also give all high-lying vibrational energies which are still difficult to obtain by experiment at present. These results supply necessary data for the studies which need high-lying vibrational energies and dissociation energies of diatomic alkali-metal molecule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.