Abstract

The accurate computation of the propagation constants and field distributions of different modes in nonlinear optical dielectric waveguides is addressed in this paper. Using the vector finite-element formulation of the beam propagation method, combined with the imaginary distance propagation technique, both linear and nonlinear modes can be accurately calculated. The proposed technique is applied to obtain the fundamental TE nonlinear mode of a strip-loaded waveguide, and the excellent agreement seen with published results shows its high numerical precision.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call