Abstract

Multiple scattering of waves in disordered media is often seen as a nightmare whether it be for communication, imaging, or focusing purposes. The ability to control wave propagation through scattering media is thus of fundamental interest in many domains of wave physics, ranging from optics or acoustics to medical imaging or telecommunications. Thirty years ago, it was shown theoretically that a properly designed combination of incident waves could be fully transmitted through (or reflected by) a disordered medium. Although this remarkable prediction has attracted a great deal of attention, open and closed channels have never been accessed experimentally. Here, we study the propagation of elastic waves through a disordered elastic waveguide. Thereby, we present experimental measurements of the full S-matrix across a disordered elastic wave guide. To that aim, laser-ultrasonic techniques have been used in order to obtain a satisfying spatial sampling of the field at the input and output of the scattering medium. The unitarity of the S-matrix is investigated and the eigenvalues of the transmission matrix are shown to follow the expected bimodal distribution. Full transmission and reflection of waves propagating through disorder are obtained for the first time experimentally. The wave-fields associated to these open and closed channels are imaged within the scattering medium to highlight the interference effects operating in each case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.