Abstract

To achieve a required product quality during Low Pressure Die Casting (LPDC) process, it is necessary to identify and also control the main input parameters affecting the casting defects to arrive at the desired output quality. In industrial scale LPDC, where the issues of part quality, cost, and cast speed are the main driving forces for the industries, the cast process optimization to have minimum defects is quite essential. The LPDC process of light weight metals is defined as a casting process where the die is filled relatively slowly at low pressure. The melt flow regime has low turbulence, and filling process can be defined as relatively smooth filling. In recent years, in order to limit the component defects, the through process simulation has widely been used. In an interactive simulation environment, a full multi-phase casting process simulation (thermal-fluid simulation using multi-physical domain) along with its material and mechanical simulations are carried out in a single environment. One of the main contributions of this paper is to show the advantages of using full through process simulation of LPDC to limit the defect in the component. An experimental program along with a comprehensive process simulation has been setup to optimize the casting process and the results were presented for real world case studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call