Abstract

To assess the full-thickness macular hole (FTMH) size using the choroidal hypertransmission signal on spectral-domain optical coherence tomography and to compare this method to the standard aperture measurement of the minimum aperture size at the level of the neurosensory retina. Cross-sectional study of retrospective data. Eyes with FTMH imaged on spectral-domain optical coherence tomography were included. Two independent masked graders used the device's built-in caliper tool to measure the FTMH minimum aperture size at the level of the neurosensory retina and the size of the corresponding hypertransmission signal below the level of the retinal pigment epithelium/Bruch membrane complex. To assess the reproducibility of the hypertransmission measurement in tilted scans, two measurements were obtained and compared; the first was traced parallel to the retinal pigment epithelium (parallel hypertransmission), and the second was horizontal to the image frame (horizontal hypertransmission), both using Image J software. A total of 31 eyes were enrolled. The mean FTMH minimum aperture size was smaller compared with both the choroidal parallel hypertransmission and horizontal hypertransmission measurements (mean ± SD: 335.7 ± 139.5 µm, 376.7 ± 150.6 µm, 375.1 ± 150.0 µm, respectively. P < 0.001 for both comparisons). The proposed hypertransmission measurement is a feasible and reproducible alternative to assess FTMH size and could provide the basis for an automated FTMH measurement on cross-sectional spectral-domain optical coherence tomography scans, as presented in this study, or on the spectral-domain optical coherence tomography volumetric data set by using an en face projection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.