Abstract

For the first time, the complete structure of the lipid A from the lipopolysaccharide of an Agrobacterium species is here reported. In particular, the structure of the lipid A from A. tumefaciens strain C58, a soil pathogen bacterium strictly related to Rhizobiaceae, was determined. The structural study, carried out by chemical analysis, mass spectrometry, and nuclear magnetic resonance spectroscopy, revealed that lipid A fraction consisted of a mixture of species all sharing the bis-phosphorylated glucosamine disaccharide backbone that could be designated in two main structural motifs, according to the acylation pattern. The main species was a penta-acylated lipid A bearing two unsubstituted 14:0 (3-OH) fatty acids in ester linkage and two 16:0 (3-OH) in amide linkage; the one on GlcN II was O-acylated by a long chain fatty acid, 28:0 (27-OH). This in turn was esterified by a 3-hydroxy-butyroyl residue at its hydroxy group. The second species, in lesser amounts, was identified as a tetra-acylated lipid A and lacked the 14:0 (3-OH) residue on GlcN I. Other species deriving from these two lacked a phosphate group or 3-hydroxy-butyroyl residue or otherwise carried a 26:0 (25-OH) as long chain fatty acid. The lipid A structure of phytopathogen A. tumefaciens strain C58 presents deep structural analogies with lipid A of symbiotic Rhizobium, and the hypothesis is advanced that it can be a strategy of the bacterium to escape or attenuate the plant response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.