7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1039/c2cp23741e
Copy DOIJournal: Physical Chemistry Chemical Physics | Publication Date: Dec 22, 2011 |
Citations: 29 |
A detailed structural and electrochemical study of the ion exchanged Li(2)Ti(6)O(13) titanate as a new anode for Li-ion batteries is presented. Subtle structural differences between the parent Na(2)Ti(6)O(13), where Na is in an eightfold coordinated site, and the Li-derivative, where Li is fourfold coordinated, determine important differences in the electrochemical behaviour. While the Li insertion in Na(2)Ti(6)O(13) proceeds reversibly the reaction of lithium with Li(2)Ti(6)O(13) is accompanied by an irreversible phase transformation after the first discharge. Interestingly, this new phase undergoes reversible Li insertion reaction developing a capacity of 170 mAh g(-1) at an average voltage of 1.7 V vs. Li(+)/Li. Compared with other titanates this result is promising to develop a new anode material for lithium ion rechargeable batteries. Neutron powder diffraction revealed that Na in Na(2)Ti(6)O(13) and Li in Li(2)Ti(6)O(13) obtained by Na/Li ion exchange at 325 °C occupy different tunnel sites within the basically same (Ti(6)O(13))(2-) framework. On the other hand, electrochemical performance of Li(2)Ti(6)O(13) itself and the phase released after the first full discharge is strongly affected by the synthesis temperature. For example, heating Li(2)Ti(6)O(13) at 350 °C produces a drastic decrease of the reversible capacity of the phase obtained after full discharge, from 170 mAh g(-1) to ca. 90 mAh g(-1). This latter value has been reported for Li(2)Ti(6)O(13) prepared by ion exchange at higher temperature.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.