Abstract

We have previously reported that non-activated platelets can be induced by morphological changes from the recombinant fusion protein of GST-rhodostomin [GST-RHO(RGD)], a member of disintegrin with an arginine–glycine–aspartic acid (RGD) motif. In this study, we further characterized the factors involved in platelet shape changes induced by rhodostomin. From less to full-spreading, four cell spreading indexes, p1, p2, s1 and s2, were designated to the platelet shape based on the scanning electron micrographs. Results of peptide competition and antibody blocking confirmed that interaction between the RGD of rhodostomin and the α IIb β 3 integrins of platelets was required for induction of a higher percentage of s2 cells. When platelets were pretreated with calphostin C, herbimycin A and cytochalasin B, respectively, the percentage of p1 and p2 cells on rhodostomin-coated plates was increased and, concomitantly, the percentage of s1 and s2 cells was decreased. Biochemical analyses indicated that the focal adhesion kinase (FAK or pp125 FAK) in platelets that adhered to GST-RHO(RGD) was phosphorylated in contrast to little or no phosphorylation of FAK in cells adhered to fibrinogen or non-activated cells. Furthermore, the degree of FAK phosphorylation was consistently correlated with morphological changes in platelets treated with various drugs. Taking all the results together, we suggested that rhodostomin could directly bind to integrins of platelets and then trigger signal transduction leading to FAK phosphorylation and actin polymerization and finally resulting in platelet full-spreading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.