Abstract

Contemporary full spectrum or "spectral" flow cytometry is a recently developed technology that allows for high-dimensional flow cytometric analyses of cells and particles in suspension. This single-cell technology has gained popularity in research settings because it can conservatively detect 35 or more antigens simultaneously in a single-tube assay format. Recently, spectral flow cytometry has obtained regulatory approval for use as an in vitro diagnostic device in China and Europe, enabling use of this technology in some clinical flow cytometry laboratories. The purpose of this review is to describe the basic principles of conventional and spectral flow cytometry, contrasting these two technologies. To illustrate the analytic power of spectral flow cytometry, we provide an example of spectral flow cytometry data analyses and the use of a machine learning algorithm to harvest the vast amount of information contained within large spectral flow cytometry datasets. Finally, we discuss the advantages of spectral flow cytometry adoption in clinical laboratories and preliminary studies comparing the performance of this technology relative to conventional flow cytometers that are currently used in clinical laboratory environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call