Abstract

Marine biofouling hazards the sustainable development of the environment and has become a potential threat to environmental and ecological security. Photocatalytic antibacterial agents driven by the full solar spectrum are promising antifouling agents for environmental protection. The cuprous oxide/perylene-3,4,9,10-tetracarboximide (Cu2O/PDINH) heterostructure was successfully constructed by integrating p-type Cu2O and n-type PDINH to improve photocatalytic antibacterial efficiency. PDINH extended the absorption spectrum from ultraviolet to near-infrared, improving light utilization by 75 %. The Cu2O/PDINH heterostructure reduced the toxicity risk of Cu2O for environmental pollution, achieved full solar spectrum drive and overcame the inherent defect that Cu2O cannot produce singlet oxygen. The Cu2O/PDINH heterostructure exhibited excellent long-term and photocatalytic antibacterial activity with an antibacterial rate of > 90 % due to the sterilization of copper ions and the continuous generation of ROS driven by the full solar spectrum. This inorganic-organic Cu2O/PDINH heterostructure shows great application prospects in energy and the environment. The Cu2O/PDINH heterostructure with effective ROS increase and superior photocatalytic sterilization efficiency has great potential for environmentally friendly marine antifouling agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.