Abstract
The utilization of geothermal energy is becoming increasingly important in the current transition towards sustainable energy sources. Among the various methods of utilizing geothermal energy, the use of hybrid geothermal power plants that exploit CO2 fluid for preheating in electricity generation has been identified as an attractive approach. Additionally, the shallow ground source heat pump (SGSHP) has been proven to be superior in previous experimental studies. However, the full-scale utilization of geothermal energy, through generating electricity from geothermal power plants and applying waste heat with SGSHPs for auxiliary heating, needs further exploration. This study proposes a novel CO2 hybrid geothermal system that incorporates a GSHP heating system. The hybrid geothermal system uses CO2 as the underground working fluid, and the electricity and waste heat are used to assist the GSHP for heating, ventilation, and air conditioning. The proposed system can produce 11.41 MW of electricity, 80 °C of hot water, and 34.76 MW of cold energy by driving 50 MW of the geothermal heat. Through a comprehensive analysis of the economy, energy, exergy, and environment, the results demonstrate that the maximum exergy damage of the refrigeration power cycle is 37999.33 kW, which has the highest exergy losses. The exergy loss of the steam turbine heat power conversion in the geothermal power generation process is the highest, but this loss can be effectively reduced through heat integration. The optimal cooling temperature of the coupled system should be set at 8 °C, and it has a good investment prospect. In summary, the CO2 hybrid geothermal system can realize effective cogeneration and fully utilize geothermal energy. Therefore, it has great potential to contribute to the transition towards a sustainable energy future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.