Abstract
The mechanical construction method for a subway contact channel has the advantages of a short construction period and high safety, and is more and more being applied in coastal soft-soil areas. In order to explore the suitability of this method in inland areas, a full-scale model test platform is used to simulate the shield-cutting construction process of the subway contact channel. The convergence deformation of the segments and the strain of the reinforcement and concrete are tested, so as to analyze the internal force and deformation law of the tunnel structure during cutting construction. The influence of the steel ring on the deformation of the subway contact channel is also studied. It is found that the segment convergence at the top is less than that at the waist position, and the convergence deformation of the waist is less than 30 mm; the internal force of the segment redistributes and the axial force mainly decreases during the cutting process; the stress state may change from compression to tension. The segment structure of the main tunnel, the supporting structure in the tunnel, and the stiffness of the steel-ring-lined composite pipe segment have little influence on the cutting force of the contact channel. The research results provide the corresponding technical indexes for the construction of a contact channel by the mechanical method, as well as a reference for the design and optimization of a steel-ring-lined composite pipe segment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.