Abstract

In Oct. 2007, the semisubmersible platform PETROBRAS 52 (P-52) was installed in Campos Basin (Roncador Field) offshore Brazil, in a depth around 1800 m through 16 lines in taut-leg con. The maximum production capacity is 180.000 bpd with a displacement of 80,986t at the operational draft of 27.5 m. Slow drift motions in the vertical plane (heave, roll, and pitch) were observed in a model test performed in a wave basin during the design phase. As resonant responses vary considerably with the damping loads, slow motion could be affected by scale effects. To observe the phenomena, by that time, it was a doubt if this phenomenon would happen during the platform operation. Since June 2008, PETROBRAS has been monitoring P-52 motions with the use of accelerometers and rate-gyros. Through spectral analysis of the measured signals, it was possible to verify the presence of slow motions with frequencies around the natural frequencies of roll and pitch during almost the whole monitoring period. Sometimes, the 2nd order amplitudes were even greater than the 1st order ones. Furthermore, the environmental conditions have also been monitored through wave radars, ADCPS (current) and meteorological stations (wind) in the vicinity of P-52 location, making the excitation loads identification possible. A comparative study confronting full-scale measurements and theoretical predictions was performed. First and second-order forces and responses were calculated using Wamit® second order module. This study permitted the estimation of the full scale damping values of this offshore system (hull plus mooring and riser lines) for one of the environmental conditions measured. The results indicate the importance of considering the resonant roll and pitch motions in the seakeeping analysis of large-volume semisubmersible platforms, contributing with an important feedback to future designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.