Abstract

External interference on gas and oil transmission pipelines is consistently reported as leading cause of leaks in Europe and USA as identified in the EGIG and PHMSA incident databases. External interference due to ground working machinery strikes, rock strikes during backfilling, etc. on buried pipelines result mainly in dent and gouge defects. The long-term integrity of a pipeline segment damaged by a dent and gouge defect is a complex function of a variety of parameters, including pipe material properties, pipe geometry, defect geometry linked to indenter shape, aggression conditions. The complexity and extreme variability of these dent and gouge defect shapes and pipe materials lead simple assessment models to scattered predictions, hinting towards an insufficient description of real structural and material behavior. To improve knowledge beyond the numerous studies led in the past, and to provide a sound foundation for developing and validating mechanistic models for predicting burst and fatigue strength of such defects, a large experimental program was funded by PRCI and US DoT and further coordinated with a complementary EPRG program. The experimental program part dealing with combined “Dent and Gouge” defects is covered for modern pipes (24″ OD, X52 and X70) by PRCI project MD-4-1: realistically created (with a Pipe Aggression Rig) defects submitted to full scale burst and fatigue tests, in addition to extensive characterization. This work interfaces with modeling to predict the immediate burst strength and fatigue resistance of such damage in two PRCI projects denoted MD-4-3 and MD-4-4 respectively. This paper gives an overview of some of these activities: PRCI project MD-4-1 results: material characterization, full scale burst and fatigue tests on Dents with Gouges, as well as detailed explanations concerning the initial approach to model burst and fatigue life of these defects, as developed byr PRCI project MD-4-4. The final outcome of the expected knowledge improvements about the mechanical strength of dent and gouge combinations will be applicable by pipeline operators, in order to enhance integrity management systems designed to manage the threat associated with mechanical damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call