Abstract
Full rotatability identification is a problem frequently encountered in linkage analysis and synthesis. The full rotatability of a linkage is referred to a linkage in which the input may complete a full revolution without the possibility of encountering a dead center position. In a complex linkage, the input rotatability of each branch may be different. This paper presented a unified and comprehensive treatment for the full rotatability identification of six-bar and geared five-bar linkages disregard the choice of input and output joints or fixed link. A simple way to identify all dead center positions and the associated branches is discussed. Special attention and detail discussion is given to the more difficult condition with the input given through a link or joint not in the four-bar loop or on a gear-link. A branch without a dead center position has full rotatability. Using the concept of joint rotation space, the branch of each dead center position, and hence the branch without a dead center position can be identified easily. The proposed method is simple and conceptually straightforward and the process can be automated easily. It can be extended to any other single-degree-of-freedom complex linkages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.