Abstract

Noninvasive 3D ground-penetrating radar (GPR) imaging with submeter resolution in all directions delineates the internal architecture and processes of the shallow subsurface. Full-resolution imaging requires unaliased recording of reflections and diffractions coupled with 3D migration processing. The GPR practitioner can easily determine necessary acquisition trace spacing on a frequency-wavenumber (f-k) plot of a representative 2D GPR test profile. Quarter-wavelength spatial sampling is a minimum requirement for full-resolution GPR recording. An intensely fractured limestone quarry serves as a test site for a 100-MHz 3D GPR survey with 0.1 m × 0.2 m trace spacing. This example clearly defines the geometry of fractures in four different orientations, including vertical dips to a depth of 20 m. Decimation to commonly used half-wavelength spatial sampling or only 2D migration processing makes most fractures invisible. The extra data-acquisition effort results in image volumes with submeter resolution, both in the vertical and horizontal directions. Such 3D data sets accurately image fractured rock, sedimentary structures, and archeological remains in previously unseen detail. This makes full-resolution 3D GPR imaging a valuable tool for integrated studies of the shallow subsurface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call