Abstract
The image quality degradation due to the loss of high-frequency components of images is often seen in real scenarios, such as artifacts caused by image compression and image blur caused by camera shake or out of focus. Quantifying such degradation is very useful for many tasks that are related to image quality. In this paper, an effective approach is proposed for the image quality assessment on images with blur as well as images with compression artifacts. Based on the relation between the dictionaries of the degraded image and the reference image, we build up a hybrid dictionary learning model to characterize the space of patches of the reference image as well as that of the degraded image. The image quality is then measured by the difference between the two resulting dictionaries. Combined with a simple sparse-coding-based metric, the proposed method shows competitive performance on five benchmark datasets, which demonstrates its effectiveness.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.