Abstract
The combination of the need for alternative devices and the improvement in process technology has led to the examination of silicon quantum wires for future MOS technology. However, in order to properly model these devices, a full three-dimensional quantum mechanical treatment is required. In this paper, we present the results of a three-dimensional, fully quantum mechanical, self-consistent simulation of a silicon quantum wire MOSFET (Metal Oxide Field Effect Transistor) with a narrow channel (8 nm). A quasi-standing wave is formed in the narrow channel at certain gate voltages as the electron density is trapped in narrow channel. These effects are the result of two competing effects: (1) the interaction of the propagating electrons with the channel dopants, as well as with the dopants in the source and drain of the device. (2) the reflections from the boundaries that form the narrow channel both on the source side and the drain side.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.