Abstract

We presented systematical ab-initio calculations for the n-body (n = 1-4) interaction energies (IEs) in Al-rich AlX (X = H~Sn) alloys, by using the full-potential Korringa-Kohn- Rostoker Green's function (FPKKR) method, and clarified the fundamental features and the thermal electronic contribution due to the Fermi Dirac (FD) distribution for these IEs. We show the calculated results for the IEs: (1) the 2-body IEs of the X = 3d and 4d impurities are strongly repulsive at the 1st-nearest neighbor (nn) and show the oscillating behavior with the interatomic distance; (2) the 1st-nn 2-body IEs of the X = Ne, Ar, and Kr (inert gas elements) impurities are strongly attractive; (3) the 1st-nn 2-body IEs around X = N (2sp element) are repulsive and relatively high; (4) the thermal electronic contribution due to the FD distribution is considerably high for the X = d impurities, while very low for the X = sp impurities; (5) the n-body (n = 1-4) IEs of the X = 3d and 4d impurities in Al and the thermal electronic contribution for these n-body IEs may be in general lower and lower with the increase in n. It is also discussed that the fundamental features (attraction or repulsion) of the calculated 2-body IEs may be understood by considering the strength differences among the X−X, Al−X, and Al−Al interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.