Abstract
The contributions of the individual process steps of the cathode resistance were determined experimentally, directly from impedance spectra obtained from symmetrical cells. The symmetrical cells have architecture/structure consisting of YSZ electrolyte and a double layer cathode LSM-LSM/YSZ. The investigations were carried out in the temperature interval from 650 to 900 °C. The cathode processes steps activation energies obtained were 1.16 eV, 1.1 eV, and 0.09 eV (diffusion), respectively, which is in relatively good agreement with literature values. To understand the role of layer cathode thickness on electrochemical performance, electrical impedance spectra from symmetric LSM/YSZ/LSM cells were deconvoluted to obtain the key electrochemical components of electrode performance, namely ohmic resistance (RΩ), two low frequency processes related with chemical adsorption and dissociative reaction of O2 (Rp1 and Rp2), and bulk gas diffusion (W, finite warburg) through the electrode pores. The model used has Voight structure with three times constant. These parameters were then related to features, such as contact layer thickness, function layer thickness, and temperature. It was found that polarization resistance is highly dependent on the thickness of the contact layer (Rp1 and Rp2). All deconvoluted parameters are validated by using the appropriate physicochemical model.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.