Abstract

Acceleration of relaxation toward a fixed stationary distribution via violation of detailed balance was reported in the context of a Markov chain Monte Carlo method recently. Inspired by this result, systematic methods to violate detailed balance in Langevin dynamics were formulated by using exponential and rotational nonconservative forces. In the present paper, we accentuate that such specific nonconservative forces relate to the large deviation of total heat in an equilibrium state. The response to these nonconservative forces can be described by the intrinsic fluctuation of the total heat in the equilibrium state. Consequently, the fluctuation-dissipation relation for nonequilibrium steady states is derived without recourse to a linear response approximation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call