Abstract

We report the use of broadband heterodyne spectroscopy to perform continuous measurement of the interaction energy between one atom and a high-finesse optical cavity, during individual transit events of $\sim 250$ $\mu$s duration. Measurements over a wide range of atom-cavity detunings reveal the transition from resonant to dispersive coupling, via the transfer of atom-induced signals from the amplitude to the phase of light transmitted through the cavity. By suppressing all sources of excess technical noise, we approach a measurement regime in which the broadband photocurrent may be interpreted as a classical record of conditional quantum evolution in the sense of recently developed quantum trajectory theories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.