Abstract

Laser ultrasonics is a technique where lasers are used for the generation and detection of ultrasound instead of conventional piezoelectric transducers. The technique is broadband, non-contact, and couplant free, suitable for large stand-off distances, inspection of components of complex geometries and hazardous environments. In this paper, array imaging is presented by obtaining the full matrix of all possible laser generation, laser detection combinations in the array (Full Matrix Capture), at the nondestructive, thermoelastic regime. An advanced imaging technique developed for conventional ultrasonic transducers, the Total Focusing Method (TFM), is adapted for laser ultrasonics and then applied to the captured data, focusing at each point of the reconstruction area. In this way, the beamforming and steering of the ultrasound is done during the post processing. A 1-D laser induced ultrasonic phased array is synthesized with significantly improved spatial resolution and defect detectability. In this study, shear waves are used for the imaging, since they are more efficiently produced than longitudinal waves in the nondestructive, thermoelastic regime. Experimental results are presented from nondestructive, laser ultrasonic inspection of aluminum samples with side drilled holes and slots at depths varying between 5 and 20mm from the surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.