Abstract

BackgroundPinellia ternata is native to China and has been used as a traditional herb due to its antiemetic, antitussive, analgesic, and anxiolytic effects. When exposed to strong light intensity and high temperature during the reproductive growth process, P. ternata withers in a phenomenon known as “sprout tumble”, which largely limits tuber production. Shade was previously found to delay sprout tumble formation (STF); however, no information exists regarding this process at the molecular level. Hence, we determined the genes involved in tuber development and STF in P. ternata.ResultsCompared to that with natural sun-light (control), shade significantly induced chlorophyll accumulation, increased chlorophyll fluorescence parameters including initial fluorescence, maximal fluorescence, and qP, and dramatically repressed chlorophyll a:b and NPQ. Catalase (CAT) activity was largely induced by shade, and tuber products were largely increased in this environment. Transcriptome profiles of P. ternata grown in natural sun-light and shaded environments were analyzed by a combination of next generation sequencing (NGS) and third generation single-molecule real-time (SMRT) sequencing. Corrections of SMRT long reads based on NGS short reads yielded 136,163 non-redundant transcripts, with an average N50 length of 2578 bp. In total, 6738 deferentially-expressed genes (DEGs) were obtained from the comparisons, specifically D5S vs D5CK, D20S vs D20CK, D20S vs D5S, and D20CK vs D5CK, of which, 6384 DEGs (94.8%) were generated from the D20S vs D20CK comparison. Gene annotation and functional analyses revealed that these genes were related to auxin signal transduction, polysaccharide and sugar metabolism, phenylpropanoid biosynthesis, and photosynthesis. Moreover, the expression of genes enriched in photosynthesis appeared to be significantly altered by shade. The expression patterns of 16 candidate genes were consistent with changes in their transcript abundance as identified by RNA-Seq, and these might contribute to STF and tuber production.ConclusionThe full-length transcripts identified in this study have provided a more accurate depiction of P. ternata gene transcription. Further, we identified potential genes involved in STF and tuber growth. Such data could serve as a genetic resource and a foundation for further research on this important traditional herb.

Highlights

  • Pinellia ternata is native to China and has been used as a traditional herb due to its antiemetic, antitussive, analgesic, and anxiolytic effects

  • Shade inhibits the sprout tumble rate and promotes tuber production To investigate the effect of shade on P. ternata, we evaluated the rate of sprout tumble formation (STF) in P. ternata grown under control and shade conditions

  • Almost all P. ternata plants grown in control conditions showed STF, but this rate was sharply decreased in the shade (Fig. 1a)

Read more

Summary

Introduction

Pinellia ternata is native to China and has been used as a traditional herb due to its antiemetic, antitussive, analgesic, and anxiolytic effects. Both its wild and cultivated varieties are mainly found in China [1, 2]. Alkaloid has been recognized as its main active ingredient and is believed to exert anticancer effects [12, 13] Besides this property, the antiemetic, antitussive, analgesic, and anxiolytic effects of P. ternata are valuable for its use as a traditional Chinese medicine [9, 10, 14, 15]. The current demand for P. ternata is growing, sources of the plant are becoming increasingly scarce due to over-exploitation and the lack of large-scale cultivation

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call