Abstract

In utero gene therapy for genetic diseases, such as muscular dystrophies, offers potential advantages over postnatal treatment including vector delivery at the earliest point in the disease and treatment prior to full maturation of the immune system. This study examines in utero gene delivery of full-length murine dystrophin to the murine mdx model for Duchenne muscular dystrophy using a high-capacity adenoviral vector. We examined dystrophin expression, spread of vector, morphology and specific force production of the tibialis anterior muscle 9 weeks after intramuscular in utero injection. Recombinant dystrophin was expressed in the hindlimb muscles, with the majority of animals having expression in two muscles of the injected hindlimb. The dystrophin-glycoprotein complex was restored in those muscle fibers expressing recombinant dystrophin. Analysis of the percentage of dystrophin-expressing muscle fibers with centrally placed nuclei revealed effective protection from cycles of degeneration and regeneration normally seen in muscle fibers lacking dystrophin. However, due to low levels of muscle gene transfer, further advances in the efficiency of adenoviral vector-mediated gene delivery would be required for clinical applications of in utero gene therapy for primary myopathies such as Duchenne muscular dystrophy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.