Abstract

Agave species are typical crassulacean acid metabolism (CAM) plants commonly cultivated to produce beverages, fibers, and medicines. To date, few studies have examined hemicellulose biosynthesis in Agave H11648, which is the primary cultivar used for fiber production. We conducted PacBio sequencing to obtain full-length transcriptome of five agave tissues: leaves, shoots, roots, flowers, and fruits. A total of 41,807 genes were generated, with a mean length of 2394 bp and an annotation rate of 97.12 % using public databases. We identified 42 glycosyltransferase genes related to hemicellulose biosynthesis, including mixed-linkage glucan (1), glucomannan (5), xyloglucan (16), and xylan (20). Their expression patterns were examined during leaf development and fungal infection, together with hemicellulose content. The results revealed four candidate glycosyltransferase genes involved in xyloglucan and xylan biosynthesis, including glucan synthase (CSLC), xylosyl transferase (XXT), xylan glucuronyltransferase (GUX), and xylan α-1,3-arabinosyltransferase (XAT). These genes can be potential targets for manipulating xyloglucan and xylan traits in agaves, and can also be used as candidate enzymatic tools for enzyme engineering. We have provided the first full-length transcriptome of agave, which will be a useful resource for gene identification and characterization in agave species. We also elucidated the hemicellulose biosynthesis machinery, which will benefit future studies on hemicellulose traits in agave.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.