Abstract

The 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD-1) enzyme catalyses the conversion of the biologically inert glucocorticoid 11-dehydrocorticosterone to active corticosterone (11-oxoreductase activity) in vivo, and it is dramatically up-regulated in uterine myometrium in the days leading up to parturition. 11beta-HSD-1 is likely to enhance local concentrations of glucocorticoid within the myometrium and thus facilitate uterine contractility, but the stimulus for the increase in myometrial 11beta-HSD-1 is unknown. The objective of the present study was to test whether the induction of myometrial 11beta-HSD-1 is dependent on uterine occupancy or systemic hormonal signals of late pregnancy. This involved use of a unilateral pregnancy (ULP) model in which the gravid and nongravid uterine horns are both exposed to the normal systemic hormonal milieu of pregnancy. Western blot analysis showed that the 11beta-HSD-1 signal was only partially induced in the nongravid horn of ULP rats on Day 22 of pregnancy (term: Day 23). Moreover, artificial distension of this nongravid horn had no effect on myometrial 11beta-HSD-1 immunoreactivity or bioactivity at either Day 16 or Day 22 of pregnancy. Removal of fetuses and placentas on Day 18 reduced myometrial 11beta-HSD-1 bioactivity 4 days later, and this effect was not overcome by artificial maintenance of uterine distension. In contrast, after fetectomy at Day 18 (i.e., removal of the fetus but not placenta), myometrial 11beta-HSD-1 bioactivity was largely maintained on Day 22, indicative of placental support for myometrial 11beta-HSD-1 over this period. In conclusion, our data show that full induction of myometrial 11beta-HSD-1 expression and associated 11-oxoreductase bioactivity late in rat pregnancy is dependent upon intrauterine occupancy. Although the hormonal milieu of late pregnancy appears to stimulate myometrial 11beta-HSD-1 marginally, full induction clearly requires an additional stimulus. Manipulations involving fetectomy and artificial uterine distension indicate that the placenta provides at least part of this stimulus, but uterine stretch does not appear to play a role.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.