Abstract

Positron emission tomography (PET) is a valuable technique to monitor in situ and non-invasively the particle range in ion beam therapy exploiting the beta+ activity produced in nuclear interactions along the beam path within the target volume. Due to the high random rates and dead-time losses induced by the particle spills, as of to date data are usually acquired during beam pauses or after the irradiation. We have developed a new PET prototype with a faster photon discrimination component that reduces the front-end dead time, and a modularized acquisition system that parallelizes the sensitive detector area, so as to enable data acquisition also during therapeutic irradiation (full in-beam measurement). The PET system has been able to sustain the single photon count rates and acquire coincidences during the beam, in conditions of sub-clinical beam currents. A study on the paralyzation conditions and dead time losses under different beam currents is presented and the feasibility of a full in-beam PET scanner is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.