Abstract

Full-field x ray nano-imaging (FXNI) is one of the most powerful tools for in-situ, non-destructive observation of the inner structure of samples at the nanoscale. Owing to the high flux density of the third-generation synchrotron radiation facility, great progress is achieved for FXNI and its applications. Up to now, a spatial resolution of 20 nm for FXNI is achieved. Based on the user operation experiences over the years at the Shanghai Synchrotron Radiation Facility (SSRF) x ray imaging beamline, we know lots of user experiments will rely on a large range of spatial resolutions and fields of view (FOVs). In particular, x ray microscopes with a large FOV and a moderate spatial resolution of around 100 nm have a wide range of applications in many research fields. Driven by user requirements, a dedicated FXNI system is designed and constructed at the SSRF. This microscope is based on a beam shaper and a zone plate, with the optimized working energy range set to 8–10 keV. The experimental test results by a Siemens star pattern demonstrate that a spatial resolution of 100 nm is achieved, while an FOV of 50 μm is obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call