Abstract

High throughput has become an important research direction in the field of super-resolution (SR) microscopy, especially in improving the capability of dynamic observations. In this study, we present a hexagonal lattice structured illumination microscopy (hexSIM) system characterized by a large field of view (FOV), rapid imaging speed, and high power efficiency. Our approach employs spatial light interference to generate a two-dimensional hexagonal SIM pattern, and utilizes electro-optical modulators for high-speed phase shifting. This design enables the achievement of a 210-µm diameter SIM illumination FOV when using a 100×/1.49 objective lens, capturing 2048 × 2048 pixel images at an impressive 98 frames per second (fps) single frame rate. Notably, this method attains a near 100% full field-of-view and power efficiency, with the speed limited only by the camera's capabilities. Our hexSIM demonstrates a substantial 1.73-fold improvement in spatial resolution and necessitates only seven phase-shift images, thus enhancing the imaging speed compared to conventional 2D-SIM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.