Abstract

AbstractFull‐field numerical modeling is a useful method to gain understanding of rock salt deformation at multiple scales, but it is quite challenging due to the anisotropic and complex plastic behavior of halite, together with dynamic recrystallization processes. This contribution presents novel results of full‐field numerical simulations of coupled dislocation glide and dynamic recrystallization of halite polycrystalline aggregates during simple shear deformation, including both subgrain rotation and grain boundary migration (GBM) recrystallization. The results demonstrate that the numerical approach successfully replicates the evolution of pure halite microstructures from laboratory torsion deformation experiments at 100–300°C. Temperature determines the competition between (a) grain size reduction controlled by dislocation glide and subgrain rotation recrystallization (at low temperature) and (b) grain growth associated with GBM (at higher temperature), while the resulting crystallographic preferred orientations are similar for all cases. The relationship between subgrain misorientation and strain follows a power law relationship with a universal exponent of 2/3 at low strain. However, dynamic recrystallization causes a progressive deviation from this relationship when strain increases, as revealed by the skewness of the subgrain misorientation distribution. A systematic investigation of the subgrain misorientation evolution shows that strain or temperature prediction from microstructures requires careful calibration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.