Abstract

The intercalation of amines into titanium phenylphosphonate M(O 3PC 6H 5) 2 and titanium phenylarsonate M(O 3AsC 6H 5) 2 was investigated through batch and back-titration processes. Amine insertion in both layered lamellar inorganic matrices, measured by the number of moles of intercalated agent, was optimized using a complete factorial design based on two levels and four factors. The effects of solvent, ethanol and acetonitrile, neutral organic base, ethyl and propylamines, H 3C(CH 2) n NH 2 ( n=1, 2), and material mass, 30 and 40 mg, on amine insertion in both lamellar inorganic matrices was optimized using a full factorial design. Important positive effect values, 0.40×10 −3 and 0.69×10 −3 mol g −1 were observed for inorganic material and solvent whereas a negative effect, −0.33×10 −3 mol g −1 was observed for material mass. Two significant but less important binary interactions were also observed. The use of either ethyl or propylamine does not appear to affect the quantity of amine insertion. Recommended experimental conditions for maximum amine insertion obtained from this factorial design are 30 mg of titanium phenylarsonate in acetonitrile solvent using either of the studied amines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.